Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Eur Spine J ; 2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2264806

ABSTRACT

INTRODUCTION: Endoscopic spine surgery (ESS) is a minimally invasive surgical technique that offers comparable efficacy and safety with less collateral damage compared to conventional surgery. To achieve clinical success, it is imperative to stay abreast of technological advancements, modern surgical instruments and technique, and updated evidence. PURPOSES: To provide a comprehensive review and updates of ESS including the nomenclature, technical evolution, bibliometric analysis of evidence, recent changes in the spine communities, the prevailing of biportal endoscopy, and the future of endoscopic spine surgery. METHODS: We conducted a comprehensive review of the literature on ESS for the mentioned topics from January 1989 to November 2022. Three major electronic databases were searched, including MEDLINE, Scopus, and Embase. Covidence Systematic Review was used to organize the eligible records. Two independent reviewers screened the articles for relevance. RESULTS: In total, 312 articles were finally included for review. We found various use of nomenclatures in the field of ESS publication. To address this issue, we proposed the use of distinct terms to describe the biportal and uniportal techniques, as well as their specific approaches. In the realm of technical advancement, ESS has rapidly evolved from addressing disc herniation and spinal stenosis to encompassing endoscopic fusion, along with technological innovations such as navigation, robotics, and augmented reality. According to bibliometric analysis, China, South Korea, and the USA have accounted for almost three-quarters of total publications. The studies of the biportal endoscopy are becoming increasingly popular in South Korea where the top ten most-cited articles have been published. The biportal endoscopy technique is relatively simple to adopt, as it relies on a more familiar approach, requires less expensive instruments, has a shorter learning curve, and is also well-suited for interbody fusion. The uniportal approach provided the smallest area of soft tissue dissection. While robotics and augmented reality in ESS are not widely embraced, the use of navigation in ESS is expected to become more streamlined, particularly with the emergence of recent electromagnetic-based navigation technologies. CONCLUSIONS: In this paper, we provide a comprehensive overview of the evolution of ESS, as well as an updated summary of current trends in the field, including the biportal and uniportal approaches. Additionally, we summarize the nomenclature used in ESS, present a bibliometric analysis of the field, and discuss future directions for the advancement of the field.

2.
Sci Bull (Beijing) ; 66(7): 720-726, 2021 Apr 15.
Article in English | MEDLINE | ID: covidwho-1003043

ABSTRACT

Fully inactivating SARS-CoV-2, the virus causing coronavirus disease 2019, is of key importance for interrupting virus transmission but is currently performed by using biologically or environmentally hazardous disinfectants. Herein, we report an eco-friendly and efficient electrochemical strategy for inactivating the SARS-CoV-2 using in-situ formed nickel oxide hydroxide as anode catalyst and sodium carbonate as electrolyte. At a voltage of 5 V, the SARS-CoV-2 viruses can be rapidly inactivated with disinfection efficiency reaching 95% in only 30 s and 99.99% in 5 min. Mass spectrometry analysis and theoretical calculations indicate that the reactive oxygen species generated on the anode can oxidize the peptide chains and induce cleavage of the peptide backbone of the receptor binding domain of the SARS-CoV-2 spike glycoprotein, and thereby disables the virus. This strategy provides a sustainable and highly efficient approach for the disinfection of the SARS-CoV-2 viruliferous aerosols and wastewater.

SELECTION OF CITATIONS
SEARCH DETAIL